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A FINITE ELEMENT SOLUTION OF UNSTEADY 
TWO-DIMENSIONAL FLOW IN CASCADES 

D. S. WHITEHEAD* 
Whittle Laboratory, Cambridge University Engineering Department, Madingley Road, Cambridge, U.K. 

SUMMARY 
A theory is presented for unsteady two-dimensional potential transonic flow in cascades of compressor and 
turbine blades using a mesh of triangular finite elements. The theory leads to a computer program, FINSUP, 
which is fast and has moderate storage requirements, so that it can be run on a personal computer. 
Comparisons with other theories in special cases show that the program is accurate in subsonic flow, and that 
in supersonic flow, although the wave effects are smeared by the numerical process, the results for overall 
blade force and moment have acceptable accuracy. The program is useful for engineering assessment of 
unstalled flutter of actual compressor and turbine blades. 
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INTRODUCTION 

The overall aim of the present paper is to predict flutter in the blades of axial flow compressors and 
turbines. For this purpose it is required to calculate the unsteady aerodynamic forces and 
moments on the blades due to their vibration. The method to be used is essentially two- 
dimensional, but a gradual variation of the thickness (h)  of the stream surface will be allowed. The 
flow will be assumed to be reversible adiabatic flow of a perfect gas. Therefore only weak shock 
waves can be simulated, and there are no boundary layers or effects due to stalling of the blades. 
The flow will be assumed to be irrotational, so that a velocity potential (4) exists. This means that 
the effect of moving wakes coming into the cascade cannot be treated. The flow may be subsonic in 
some parts of the field and supersonic in other parts. The blade sections are assumed to vibrate 
with small amplitude as rigid bodies, and with all blades moving identically except for a constant 
phase shift (j) between each blade and the one above. 

Computational methods for the solution of this problem have been reviewed by Whitehead' 
and by Acton and Newton.2 The governing differential equation is linear, but with variable 
coefficients. Linearized methods can only be used for small perturbations of a uniform flow, and 
singularity methods can only be used for incompressible flow. It is therefore necessary to go to a 
field method. Time-marching methods have been much used but are expensive on computer time. 
The method described here uses direct matrix division: this leads to a program which is expensive 
on storage, so that only rather coarse grids can be used, but is fast. 

The complete set of programs is called FINSUP. The mesh generation and steady flow 
calculation have been described by Whitehead and N e ~ t o n . ~  This report describes the unsteady 
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calculation. Several somewhat different versions of this program now exist. An earlier version has 
been described by Whitehead.4 The version particularly described here runs on a personal 
computer. FINSUP has been extended to quasi-three-dimensional flow effects by Cedar and 
Stow,’ to blade design by Cedar and Stow6 and by Hart and Whitehead,’ and has been coupled 
into a boundary layer calculation by Stow and Newman.8 

MESH GENERATION 

A typical mesh is shown in Figure 1. It consists of triangular elements covering an area one blade 
spacing (s) in height, with a blade profile of chord c in the middle, and extending some distance 
upstream of the leading edge and downstream of the trailing edge. Axes x and y are taken in the 
axial and tangential directions. Corresponding nodes on the top and bottom of the domain have 
the same x-co-ordinate. A cusp is added to the profile at the trailingedge to simulate the wake flow 
here. The ray from the trailing edge is aligned with the expected mean outlet flow direction, and 
there is a discontinuity of potential across this wake line. The mesh-generating program is 
arranged to pack elements more thickly in regions of most interest, such as round the leading edge. 
More details of the mesh generation have been given by Whitehead and N e ~ t o n . ~  

Figure 1. Example of mesh 
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Within each triangular element a shape function 2, is defined, which is unity at node 1, zero at 
the other two nodes, and is a linear function of position within the element. Its derivative is given 
by 

where A is the area of the element. 

STEADY FLOW CALCULATION 

Only the basic equations needed for reference will be given here. Details of the steady flow 
calculation are given by Whitehead and N e ~ t o n . ~  

The notation is that p is pressure, p is density, u is velocity and q is specific mass flow within a 
stream tube of height h. An overbar refers to the steady component of any quantity and a prime 
refers to the unsteady perturbation. Contracted notation is employed, so that summation over all 
values of a repeated suffix is implied. 

The momentum equation is 

1 a p  aiii _ _  + iij-=o. p axi ax j  
For zero vorticity 

The 

The 

aiii afi .  - - ‘=O. 
axj axi 

qi = phui. 
flow is given by 

continuity equation is 

-=O. a4i 

a x i  

UNSTEADY FLOW THEORY 

Small unsteady perturbations are now superimposed on the known steady flow. The perturba- 
tions are sinusoidal in time ( t )  with angular frequency (o), so that all unsteady terms are complex 
numbers proportional to exp(iwt). 

The unsteady velocity is given by 

The deflection of the reference blade due to its vibration is, at a point xk, given by 

where 5 is the translational deflection of the blade at the origin, &ijk is the alternating tensor 
and c i j  is the torsional deflection (positive anticlockwise) about this point. li has components 
(c, - ay, 5, + ax). Its derivative is given by 
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and in particular 

The boundary condition at the blade surface is that there is no flow through the displaced and 
moving surface. The boundary condition to be applied at the mean position of the surface is then 

where ni is the outward normal to the surface. The first term on the right-hand side is the flow due 
to the surface velocity, the second term is due to the relative rotation of the blade and the mean 
flow, and the third term is due to the translation of the matching point through the mean flow field. 

A similar consideration applies to the calculation of the unsteady pressure on the surface of the 
blade, which is given by 

where p’ is the pressure at the mean position and the last term is due to translation through the 
mean pressure field. The last terms in equations (10) and (11) have caused numerical difficulty, 
because round the leading edge the mean flow and mean pressure vary rapidly with position. To 
overcome this, a modified potential 6” is used. To define this it is noted that the vector ci may be 
specified by equation (7) over the whole domain of calculation and not just at the blade surface. 
Then 

4” = @ + & U i .  (12) 

The second term in this equation is just the effect of displacing and turning the mean flow to follow 
the motion of the blade. 

The pressure perturbation is then given by 

The density perturbation is given by 

where a is the speed of sound. 

and (3). 
The pressure perturbation at  the blade surface is, from equations (11) and (13), and using (2 )  

This does not contain the awkward derivative of the mean pressure field. 
It is also convenient to write 

which is the flow vector referred to axes which move with the blade. So the boundary condition at 
the blade surface becomes simply 
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n.q!’ = 0, 
1 1  

which does not contain the awkward derivative of the mean flow field. 
The expression for qy in terms of 4” and ( is 

where 6 is the substitution tensor. 
The unsteady flow perturbation is given by 

qf = (pu; + Uip’)h. 

The continuity equation is 

aq: api 
ax, at 
-+ h- =O. 

This may be written in terms of q; and 4“ as follows: 

17 

(17) 

FINITE ELEMENT ANALYSIS 

It is assumed that 4” varies linearly within each triangular element. Hence 

4”= &Zm, (22) 
where 4; is the value of 4” at node rn. This implies that velocities, pressure and density are 
constant within each element. 

To obtain the numerical solution, a Galerkin procedure is used. The continuity equation (21) for 
each element is multiplied by the shape function Z, and integrated over the element to give 

In order to shift the differentiation from the qy term to the ‘well behaved’ shape function, the first 
term may be written 

by Gauss’ theorem, where n, is the unit normal drawn out from the surface, and the first integral is 
taken clockwise round the boundary of the element. Putting this into equation (23) and using (18) 
gives 

+I{ - i w h ( a , y ) % ( j + e ( . U . Z  +ti.[.-- az, ah -io-(kZ,} ah pdA axi a2 Jax,axj ax, 
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The terms proportional to 4; give 

where 

since when the integral over the triangular element is performed, aZ,/ax, is constant and 

Z,dA=fA, l 
Z,Z,dA = & A ( ]  +a,,). s 

There is an analogy with structural problems, in which load corresponds to unsteady flow and 
structural deflection corresponds to unsteady potential, so that K , ,  will be referred to as a stiffness 
matrix. 

Whilst this is satisfactory in subsonic flow, for supersonic flow it requires to be stabilized, just as 
for the steady calculation, by using upwind densities. Here only the most elementary upwinding 
scheme will be used, in which the density is taken in whole from the next element upstream instead 
of from the element under consideration. This corresponds to an artificial viscosity factor (v) of 
unity and was used for simplicity of programming. Results fm steady flow3 suggest that much 
sharper shock and wave effects could be obtained by using an artificial viscosity factor which 
varied with mean flow Mach number, in the same way as was used for steady flow. A superscript 
asterisk indicates an upwinded quantity. Only the quasi-steady terms independent of o are 
upwinded. The expression (26) is therefore replaced by 

K,m 4; + KI", 4:*, (30) 

where 

and 

Turning to the second integral in equation (25 ) ,  containing terms proportional to (, the terms 
involving ahlax are assumed to be small and will be neglected. The following integrals are used: 

where X and j are the co-ordinates of the centroid of the element, and 

Rn= [ $1 
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The complete result of integrating equation (25) over the triangular element is then 

K l , 4 k + K & 4 ~ * + F f , R , =  niqyZ,ds, (36) s 
where 

The F,,R, term behaves as a source term distributed over the whole field, owing to the 
incorporation in 4” of terms depending on the blade motion. It is zero in quasi-steady flow, w-0. 

In the assembly process the equations for a node L for all triangular elements meeting at L are 
added together. Then the surface integral on the right-hand side of equation (36) cancels for all 
internal nodes, but has to be considered at the surfaces of the box and in the wake. By equation (17) 
it is zero at the blade surface. 

FLOW CORRECTION INTEGRAL 

The boundary conditions on the surface of the box will be applied in terms of qi rather than 4;. So 
in evaluating the right-hand side of equation (36), the following integral is required: 

= 1 Z,d(i,q, - iyqx) - io pni iiZ, hds. s 
In evaluating the equations for a node L on the boundary of the box (see Figure 2), these 

integrals have to be evaluated from A to D. Z, varies linearly from zero at A to unity at L to zero 
at D. The following integrals are required: 

” 

P 

Figure 2.  Evaluation of boundary integral 
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CONDITIONS AT THE REPEAT BOUNDARY 

Figure 3 shows nodes A, L and D on the bottom (suffix b) boundary of the domain, and 
corresponding nodes A,, L, and D, on the top (suffix t) boundary. Since there is a blade-to-blade 
phase angle P, every unsteady quantity on the top boundary corresponds to the same quantity on 
the bottom boundary, multiplied by exp(i8). Hence 

and 
(45) 

(46) 

Figure 3. Repeat boundary condition 
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The corresponding condition on 4” is, from equation (12), 

where 

CP,,,=[E,{l -exp(-ifl)}, U,{l -exp(-ifl)}, (x,ii,-y,~,)(l -exp(-ifl)} +U,s]. (49) 
The procedure for assembling the equations is to add together all the equations (36) relating 

to node L for all the elements meeting at L, and then to add together all the equations (36) relating 
to node L,. The system relating to node L, is then multiplied by exp( - ifl) and added to the system 
relating to node L. The result is 

{z Kim$k+x K k 4 ; * + ~  FtnRn ~ i r n 6 k + ~  b Kt , rb ;*+~  FinRn 

n,q:’exp( -iP)Z,ds s AtLtDi 
= sALD niq;’Z,ds + 

using equations (43) and (46). 
The values of 4:’ on the top surface of the domain are eliminated using equation (48), and the 

terms introduced by the second term on the right-hand side of this equation will be referred to as 
‘potential correction terms’. The result can be written in the form 

x K,,~:+c Kk#;*=( -~F, ,+FC, ,+PC, ,  R,. ) (52) 

The stiffness matrices K and K* are assembled for elements on the top of the domain as if the 
suffices referred to the corresponding nodes on the bottom of the domain, and according to the 
following rules. 

If 1 and rn both refer to nodes on the top of the domain, then K,, is used. 
If 1 is on the top of the domain and rn is internal, then exp(-ib)K,, is used. 
If 1 is internal and rn is on the top of the domain, then exp(ifl)K,, is used. 
For the source terms and flow correction terms, if 1 refers to a node on the top of the domain, 

For the potential correction terms, if 1 and m both refer to nodes on the top of the domain, 
exp( - ifl)F,, and exp( -ifl)FC,, are used. 

PC,n =K,mCPmn, (53) 

PC,, = K,,CP,,exp(ifl). (54) 

and if 1 refers to an internal node and rn is on the top, 

BOUNDARY CONDITIONS ACROSS THE WAKE 

The conditions to be applied across the wake are that the flow must be continuous across the 
wake, 

A(n,q:)=A(n,q:’)=O, (55 )  
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and that the pressure must be continuous across the wake, so that 

where A refers to the difference between the bottom and top of the wake. 
It will be assumed that the wake lies along a straight line from the trailing edge (suffix te) and 

that the steady velocity is constant and equal to the steady velocity far downstream (denoted by 
suffix 2). This leads to 

A@=A(6"=(A(6"),,exp{ -ia(x-xte)/iix2}. (57) 
In the assembly process, the equations for a node on the top of the wake are added to the 

equations for a node on the bottom of the wake, and by equation (55) the flow integrals cancel. 
Equation (57) may then be used to eliminate (6" on the bottom of the wake. The result is that 
reference to a node rn on the top of the wake is treated as if the node were on the bottom of the 
wake, and 

Klmexp(- iw(x , -x , , ) / i ix2)  is added to Kl l  

and 

-K,,exp( -iw(x,,,-xle)/iix2} is added to K l { N p - l ) .  

Here suffix 1 refers to a node on the bottom surface of the blade at the trailing edge, and suffix 
( N P -  1) refers to a node on the top surface at the trailing edge. 

In subsonic flow this procedure automatically satisfies the Kutta condition at the trailing edge, 
since it makes the pressures in the two elements adjoining the cusp behind the trailing edge very 
nearly equal. In supersonic flow, however, there is usually a sudden change in pressure between the 
elements which include a node at the trailing edge. 

BOUNDARY CONDITIONS AT INLET 

The boundary conditions at the inlet face are found by matching the solution to a linearized 
analytic solution obtained by assuming that the mean flow conditions are uniform. This analytic 
solution is given by 

where C, are constants. 

blade phase angle p, so that 
The wave number in the tangential direction, fi, must be chosen to satisfy the required blade-to- 

p^= ( p  + 27tr)/s, (59) 

where r is an integer. 

2, is given by 
Substitution in the convected wave equation shows that the wave number in the axial direction, 

(60) 2 = ((a/Z + P M y ) M x  * (- D)1'2}/(  1 - Mf ), 

where 

D = (1 - M f ) P  - (u/Z + [ M y ) 2 ,  
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and the Mach number components are given by 

M ,  = ii,/ii, (62) 

M y  = iiy/ii. (63) 
If D is positive, then equation (60) shows two complex values of 2. The negative sign gives a 

solution which grows exponentially in the direction of x increasing, and this is the root required on 
the upstream face. 

IfD is negative, then there are two real roots for B corresponding to two propagating waves. One 
root corresponds to a wave carrying energy axially upstream, and this is the root required on the 
upstream face. The other root corresponds to a wave carrying energy downstream, and this is the 
root required on the downstream face. On the upstream face, if (cola+ BM,) is positive, the positive 
sign in equation (60) is required, and if (cola + [ M y )  is negative, the negative sign is required. 

When D is zero, the resonance or cut-off condition occurs, and near this point the results from 
the program are found to exhibit wild fluctuations. 

The unsteady axial flow perturbation is given by 

where the choice of sign is made in the same way as for equation (60). 
If there are N elements adjoining the upstream boundary (so that counting both corner points 

there are N + 1 nodes), then N terms of the series in equations (58) and (64) can be used to match 
the finite element solution. r l  and rN are chosen so that those terms with the largest possible 
wavelength in the y-direction, and therefore least I bl, are used. 

Equation (58) gives the unsteady potentials at the nodes on the inlet face. Node I ,  1 < I  < N ,  is at 
(xBL, YBL + ( I -  l)s/N), where the suffix BL indicates the node at the bottom left corner of the mesh. 
so 

[$:I =[exp(i~~/N)1Cexp(i~~r~/N)1[Crexp(i(BxBL+bYBL-bs/N)} 1. (65) 
Inversion of the matrix in the second factor gives 

[exp(i2nrl/N)] - = (1/N)[exp( - i2dr/N)], 

so that 

CCrexp { i(BxBL + bYBL - B ’ s / N ) }  1 =(l/N) Cexp( - ibm/Nv)l [$61. (66) 
The flow integral for node I (see Figure 2) is, using equation (64), given by 

rn  Ihl j - n,q;Z,ds= 2 i-( -D)”*iphC,exp[i(Bx,,+ byBL + & I -  l)s/N}](s/N)F(bs/N), (67) 
A r= r1  

The function F ( 8 )  has the effect of attenuating the terms with the higher values of I/?[. It is similar 
to, but less drastic than, the a-function used by Lanczosg to mitigate the effects of truncating a 
Fourier series. 

C, may be eliminated from equations (66) and (67) to give 
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where KYm is the stiffness matrix for the upstream region, regarded as a finite element with N nodes, 
given by 

I N  

K : ~ =  C +(-0)'/2iph(s/N2)exp{i(l-m)?s/N)F(~s/N). (70) 
r = r i  

When the equations are assembled for a node on the inlet face, the result is 

where the flow correction (FC) is given by equation (44), and the potential correction is 

PCIn = CUxl* U y 1 9  (xlUy1 --~,X.xl )I. (72) 

BOUNDARY CONDITIONS AT OUTLET 

Behind the exit face there is a potential field exactly similar to that ahead of the inlet face. There is 
one change of sign to select the waves decaying or propagating downstream, and another because 
the vector ni points in the opposite direction. Equation (70) therefore also applies for the 
downstream region. 

In addition there is a field due to the vortex sheets shed from the trailing edge of each blade. The 
potential jump across the wake vortex sheets (A@) is given by equation (57). To analyse this field it 
is convenient to take axes Ox' and Oy', parallel and perpendicular to the mean flow, at an angle u2 
to the axial direction, and with a velocity U2. The origin for these axes is taken at the point where 
the wake from the reference blade crosses the outlet plane, as shown on Figure 4. All unsteady 

I I 

L x 

Figure 4. Outlet boundary 
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variables are convected at the mean flow velocity and are proportional to exp {io(t -x’ /U2)} .  This 
flow has no pressure or density fluctuations, so that it is effectively incompressible and satisfies 
V24‘ = 0. The required solution in the region 0 < y’ < s cos a,, satisfying continuity of velocity 
normal to the wake and giving the correct A@, is 

4‘= { C,exp(wy’/u,)+ C,exp(-oy’/ii,))exp(-iox’/ii,)(A~’),, (73) 

C ,  = {exp(iP)-exp(-Q))/4(coshQ-~osP), (74) 
C ,  = {exp(iP) -exp( + Q)}/4(cosh Q - cos P), (75) 

P=(os/ii,)sin(a,)+fl, (76) 

Q =(os/ii,)cos(a,) (77) 

where 

and (A@), is the potential jump at the exit face. 
The potential at a node I on the exit face, where x‘ = Is sin u2/N and y‘ = Is cos a, /N,  is then given 

by 

4; =A(A4’)2 9 (78) 
where 

A= C ,  exp(I<)+ C ,  exp( - l{*), O <  I <  N, (79) 

<=(os/E,N)(cosa,-isina,), (80) 
<* = (ws/ii,N)(cos ct, + i sin a,). 

For negative I, 

For 1= 0 these equations give two values off,, differing by unity, one of which applies just above 

The corresponding flow across the exit face is given by 
the wake and the other just below. 

This gives the flow integral for a node I (see Figure 4) as 

j’: niq:z,ds= gr(Ab’)Z 9 

where 
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= ( - F,, + FCt, + G , )  R,,  (87) 

where the flow correction (FC) and the potential correction (PC) are obtained from equations (44) 
and (72) as before. 

BLADE FORCES AND MOMENT 

The result of assembling equations (36) for each element, together with the equations for the 
boundary conditions such as (52), (71) and (87), is a set of linear equations for the unknown c$” at 
each node. These equations are solved by Gaussian elimination. The nodes are renumbered in 
such a way that the large stiffness matrix K is banded, with a consequent large reduction in the 
amount of computer storage required for this matrix. 

Once 4” has been found, the pressure on the surface is obtained from equation (15). The 
unsteady forces (in the axial and tangential directions) and moment (positive anticlockwise about 
the origin of co-ordinates) per unit blade height are then given by 

where the integrals are taken clockwise round the blade surface. The second terms in equations 
(88) and (89) are due to the rotation of the steady blade forces by an amount equal to the rotation 
of the blade. 

The final result from the program is a set of nine complex non-dimensional coefficients (C) 
which give the forces and moment as follows 

In some of the results to be quoted for cascades of flat plates or zero-camber cascades, force 
coefficients CLh and CLa, which refer to the force normal to the blade chord, and a moment 
coefficient c ,h  are used, where suffix h here refers to translational motion normal to the chord. 
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RESULTS 

Comparison between some results from various versions of this program and other theoretical 
results will be given next. These are all for strictly two-dimensional flow (k = 1). Other comparisons 
with theoretical and experimental work have been made by Bolcs and Fransson," and a 
comparison with some moderate-quality experimental transonic data has been given by Davies 
and Whitehead.' These comparisons will not be repeated here. 

Figures 5 and 6 show the real and imaginary parts of the jump in unsteady pressure across the 
blades in a flat plate cascade. The FINSUP program results are compared with results from a 
linearized flat plate program, LINSUB, based on theory by Smith.12 The program has been given 
by Whitehead.' This is for incompressible flow at the rather high frequency parameter of 6. The 
agreement between the two programs is excellent. 

Figures 7 and 8 show unsteady pressures for a cascade of biconvex zero-camber blades. The 
FINSUP program results are compared with results from a singularity theory by Atassi and 
Akai.' This is for incompressible flow at 2.1" incidence, and for bending vibration with amplitude 
a normal to the chord. Again the agreement is excellent. 

Figure 9 shows a comparison with results by Verdon.14 This is for a cascade of NACA 0006 
aerofoils, and the flow is subsonic throughout. This again is for bending vibration with amplitude 
a normal to the chord. The figure shows a work coefficient defined by 

work done per cycle per unit blade length 
p l u : a 2  

W, = 

plotted against inter-blade phase angle. If this work coefficient goes positive, then flutter is 

I 5  

5 

0 

- 5  

- 10 1 

0 

Figure 5. Flat plate cascade. Torsion about mid-chord. s/c=O.75, stagger =60", M = O ,  wc/u, =6,  /3=270" 
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10 

5 

0 

- 5  

-I0 

0 

Figure 6. Flat plate cascade. Torsion about mid-chord. s/c =0,75, stagger = 60", M =  0, oc/C, = 6,  j?= 270" 

predicted for a cascade of perfectly tuned blades having no mechanical damping. The prominent 
kinks in these curves are due to acoustic resonances in the inlet and outlet ducts. The results show 
generally satisfactory agreement, although Verdon's acoustic resonance effects appear to be 
slightly more drastic than those from FINSUP, and there are some appreciable differences near 
resonances at the higher frequencies. 

Turning to results with supersonic flow, Figure 10 shows a comparison with quasi-steady 
analytic results for supersonic uniform steady flow in a cascade of flat plates which has been 
previously used by Verdon and McCune.I5 The theory has been given, for instance, by 
Whitehead.' This is for torsional vibration about an axis at mid-chord. A wave propagating 
upwards from the leading edge is reflected from the lower surface of the next blade above at 68% 
chord, and gives a discontinuity in pressure at this point. The FINSUP result shows this pressure 
rise heavily smeared over a substantial proportion of the blade lower surface. Similarly, a wave 
propagating downwards from the leading edge passes just behind the trailing edge of the next 
blade below, missing it by 4% of the chord. The FINSUP result shows the pressure on the upper 
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-' II 
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Figure 7. Biconvex profiles. Thickness = lo%, camber=O, sic= 1, stagger=45", a, =47.1", WC/IT, = 1, B= 180" 

20 

I0 

0 

- I0 

-20 

Figure 8. Biconvex profiles. Thickness= lo%, camber=O, s/c= 1, stagger=45", a, =47.1", wc/U, = 1, j= 180" 

surface rising near the trailing edge, in anticipation of the arrival of this wave. Nevertheless, 
although the details of the unsteady pressure distributions differ quite appreciably, the integrated 
results for the blade forces and moments agree quite well, as shown in Table I. 

Table I also shows similar results for the same cascade at a frequency parameter of 0.6021. In 
this case they are compared with results from a program LINSUP, based on the theory given by 
Nagashima and Whitehead.16 Again the results agree quite well. 



30 D. S. WHITEHEAD 

f H e 5 E  RNGLE (3 
- 9oo 0 9oo t8o0 270' 

I I I 1 

-15  i 
Figure 9. NACA 0006 profile. sic = 1, stagger = 45", M, =0.7, ctl = 55" 

As a final comparison, Figures 11 and 12 show unsteady pressure distributions for the same 
cascade in the case when a strong normal shock wave stands at entry to the passage and is just 
upstream of the leading edge of the upper blade. In this case the comparison theory is that due to 
Goldstein et a1.,17 programmed by Acton (unpublished). In this case, when the blades vibrate, the 
position of the strong normal shock wave also oscillates, and this raises a delta function in the 
unsteady pressure distribution at the point where the normal shock hits the upper surface of 
the lower blade. This delta function is not shown in Figures 11 and 12, but it is included 
in the calculation of lift and moment. The shock is assumed to remain just upstream of the leading 
edge of the upper blade, so there is no delta function here. On the upper surface the two theories 
agree well over the front half of the chord, but near the shock position there is disagreement, 
because FINSUP has included the delta function and spread it over an appreciable proportion of 
the chord. On the lower surface the Acfon program does not see the normal shock at the leading 
edge, but in FINSUP this has spread onto the blade surface and affected the unsteady pressure 
distribution near the leading edge. As a result of this, when the unsteady force and moment 
coefficients are compared, as shown in Table 11, the force coefficients show quite appreciable 
differences, and the agreement for the moment coefficients is rather worse. This is a very severe 
test, since a small increase in the driving parameter for the steady flow calculation, corresponding 
to a very small decrease in the static pressure ratio across the cascade, will move the shock into the 
passage and cause a large change in the unsteady force and moment coefficients. 

CONCLUSIONS 

The theory presented leads to a computer program which is fast and has moderate storage 
requirements, so that it can be run on a personal computer. The important features in this respect 
are the use of a finite element mesh of triangular elements, the use of the modified potential @' to 
deal with difficulty in the boundary condition near the leading and trailing edges, and the use of 
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Figure 10. Flat plate cascade. Torsion about mid-chord. s/c =0.7889, stagger = 59,53", M ,  = M ,  = 1.3453, a, =a, = 59.53", 

w=o, f i= 180" 

direct matrix division, so that no iteration is necessary. Banded matrix techniques are used to 
reduce the storage requirement. In the PC implementation it is usually possible to keep the 
number of matrix elements below 16000, so that each part of the matrix fits into a single segment 
of memory, with a substantial saving of calculation time. This is about 5 min for each unsteady 
case. On a fast mainframe computer, response is essentially immediate. A typical mesh contains 
about 300 nodes and 500 elements. 

Comparisons with other theories in special cases show that the program is very accurate in 
subsonic flow, and that in supersonic flow, although the wave effects are heavily smeared by the 
numerical process, the results for overall blade force and moment have acceptable accuracy. This 
numerical smearing tends to simulate the smearing which occurs on actual blades due to 
boundary layer effects, but of course the reasons for the smearing are quite different in the two 
cases, so that the similarity is at most qualitative. Refining the mesh gives improved accuracy, but 
the reduction of shock smearing is quite small. 
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Table I. Comparison with analytic and linearized supersonic 
solutions 

Verdon and McCune cascade 'A' 
s/c =07889, stagger = 59.53", M, = M ,  = 1.3453, a, = tl, = 5953" 
Translational vibrational normal to chord 
Axis at mid-chord 

= 180.0", wc/C, = 0.0 Analytic FINSUP 

- 3.73 - 4.04 
0 2 4  0.14 

,!?= 180.0", ~ ~ / U , = 0 ~ 6 0 2 1  LINSUP FINSUP 

-0.83- 1.69; -094-  157i 
0 17 + O@li 002  + 0.1 3i 

- 2.85 + 1.22i -266 + 1.38i 
0.26 - 0.19i 0.20 - 0.14i 
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Figure 11 .  Flat plate cascade. Torsion about mid-chord. s/c=0.7889, stagger=59.53", M, = 1.34, a, = 59.53", 
OC/U, =06021, I= 180" 
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Figure 12. Flat plate cascade. Torsion about mid-chord. s/c=0.7889, stagger=59.53", MI = 1.34, a, = 59.53", 
w ~ / t i ,  =06021, p= 180" 

The results from the program can be used for engineering assessment of the stability of actual 
compressor and turbine blades, for instance as has been done by Whitehead' * for turbine blades. 
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Table 11. Comparison with Goldstein et a1.I7 

Verdon and McCune cascade ‘A’ 
s/c = 07889, stagger = 59.53” 
Translational vibrational normal to chord 
Axis at mid-chord 

Acton program 

1.3454 
0.7639 

59.53” 
59.52” 

- 1.65 - 144i 
-0.09+0.37i 
- 1.99 + 1.54i 

0.5 1 + 0.0% 

FINSUP 

1.3423 
0.7059 

59.70” 
5954” 

- 2.16 - 0.96i 
032 + 0.14i 

- 1.49 + 2.29i 
027 - 0.27i 
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